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Motivation

How to find an informative subset from the unlabeled 
dataset pool for label acquisition such that it can 

provide the most performance gain after including them 
into the training dataset?
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We experiment our batch active learning framework on
image classifications and adapt it to both Bayesian and non-
Bayesian neural networks to demonstrate its flexibility. The
model is reinitialized and retrained at the beginning of each
iteration. It then queries a batch of unlabeled data and
its test accuracy is evaluated on multiple random seeds. We
implement proximal IHT and greedy optimizations for the
sparse approximation.

We compare with Random, BALD[1], Batch BALD [2], and
Bayesian Coreset[3] on Bayesian models; Random, Entropy,
kCenter[4], and BADGE[5] on non-Bayesian models. Results
show that our methods achieve competitive performance
with lower time complexity.

Experiments

Figure 1: Active learning results on Bayesian models

Figure 2: Active learning results on non-Bayesian models

We formulate the batch active learning as a sparse
approximation problem. Given an ideal loss function with a
labeled dataset Dl and an unlabeled dataset Du:

batch active learning finds a subset S of unlabeled data,
such that the ideal loss function can be approximated as:

We generalize the batch active learning as below by
considering a sparse and non-negative importance weight
wj for each unlabeled data:

A good importance weight w is found when two unlabeled
data loss functions are close to each other:

Since true labels are unknown, we use an estimator of
them based on the model trained on all labeled data.

• Dataset label annotations require human expertise and
can be costly.

• To do this, we find a subset such that its corresponding
training loss approximates its full data pool counterpart.

The original optimization is intractable, so we transform it
into a finite-dimensional sparse optimization problem.
We derive an upper-bound that balances the trade-off
between uncertainty (variance) and representation (bias) in
a principled way:

The bias term becomes immediately tractable:

Given a decision wi > 0, its label distribution will be
concentrated on the true label offered by the oracle, with a
zero corresponding variance:

We reach a more tractable sparse approximation:

Each gj is calculated by sampling posteriors in Bayesian
settings or by gradient norms in non-Bayesian settings.

Optimization
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We propose greedy and proximal iterative hard
thresholding (IHT) optimization algorithms in solving the
sparse approximation problem.

Greedy: greedily select the item than can minimize the loss
function into a subset, until a given budget is met.
Proximal IHT: Iteratively doing (1) gradient descent to
minimize the loss function and (2) projection to satisfy the
sparsity constraint.

Time Complexity: If n is the number of data samples and b
is the query batch size, greedy algorithm takes O(nb) in time
and proximal IHT takes O(nlog(b)), lower than the SOTA
method BADGE[5].

Tabel 1: acquisition time on the first query iteration

Summary of Contributions
1. We propose a flexible batch active learning framework 
from the perspective of sparse approximation, adaptable 
for both Bayesian and non-Bayesian settings.
2. We realize this framework by deriving an upper bound 
to balance the trade-off between uncertainty and 
representation in a principled way.

3. We approximate the loss functions that lead to a finite-
dimensional, sparsity-constrained, and discontinuous 
optimization problem.
4. We offer greedy and proximal IHT as two practical appro
aches for solving the optimization problem.


