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Motivation

It is observed that adversarially robust models
transfer better [1, 2].

Questions

* (Q1) Isitreally that adversarially robust
models can transfer better?

* (Q2) If not, what properties affect domain
transferability more than robustness?

[1] Salman et al. "Do adversarially robust imagenet models
transfer better?.” NeurIPS 2020.

Better: Illustration on Image Classification.” ICLR 2021.

Adversarially Robust Model may
not Transfer Better (Answer to Q1)
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Adversarially robust models may not transfer better!
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Theoretical Result

Improving adversarial robustness is neither
necessary nor sufficient for improving domain
transferability!

Empirical Result
More robust models may even transfer worse!

* (Q3) How to explain their empirical findings?

[2] Utrera et al. "Adversarially-Trained Deep Nets Transfer

Reqularization Affects Domain
Transferability (Answer to Q2&3)

High-level Idea of Theoretical Analysis

* We define a novel pseudometric to
characterize the distance between two
distributions.

* We formally define the relative domain
transfer loss. The smaller the loss, the
better the relative domain transferability.

» With the two key definitions, we prove:

Sketch of Theorems.
Shrinking the function class of the source

model will decrease a tight upper bound
on the relative domain transferability loss.

Q2 Answer: It is expected that stronger
regularization during source model training
leads to better relative domain transferability
(target domain performance relative to
source domain performance).

Q3 Answer: adversarial training => training
with regularization => better transferability.

Data Augmentations (DAs) as
Regularization

Data augmentations can be viewed as
regularizations, and thus improving domain
transferability.

« Can be viewed as Regularization:
Adversarial training, Gaussian blur,
rescale, etc.

« Cannot be viewed as Regularization:
Rotation, Translation, etc.

e More analysis in our paper!

Conditions for Domain Transferability from the View of Regularization
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Empirical Evaluation Settings
Pipeline
Step 1: Train g, o f on the source domain.

Step 2: Fix f and finetune g, o f on the target domain.
Domain pairs: (CIFAR-10 -> SVHN) and (ImageNet -> CIFAR-10).

Substract the value on vanilla model (constant)

Metr.lcs . so that the comparison can be shown.
Relative domain transfer accuracy: 7
DT Acc = (acctgt — accsrc) —:(accfgt T &chrc)l
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Robust Accuracy: accuracy under PGD attack (¢,, e = 0.25, 20
steps) on source domain.

CIFAR10 -> SVHN ImageNet -> CIFAR10
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Empirical Evaluation

Impact of Regularizations
Jacobian Regularization (JR) with 4;. ¢
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CIFAR10 -> SVHN ImageNet -> CIFAR10
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Conclusion: stronger regularizer
leads to better domain transferability,
while robustness does not improve.
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o0 ¥ .2 Impact of Data Augmentations
Rescaling: rescale to m times smaller.
. | Blurring: Gaussian blur with kernel
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&l! :: Conclusion: stronger augmentation
leads to better domain transferability,
while robustness drops.
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More Results (see our paper):

» Other regularizations (orthogonal training, last-layer regularizing).
» Other augmentations (Gaussian blurring, posterizing).

* DAs that cannot be viewed as regularization (rotation, translation)
« Results of absolute DT accuracy and other model architectures.




