

Learning Sparse Distributions using Iterative Hard Thresholding

Jacky Y. Zhang¹ Rajiv Khanna² ¹University of Illinois at Urbana-Champaign

Motivation

Goal: Find a sparse distribution that optimizes a given loss functional $F[\cdot]$.

		Probl	em	
\min_{p}	n F	[p]	s.t.	$p \in \mathcal{D}_k,$

where \mathcal{D}_k is the set of all sparse distributions.

Example: find priors for sparse structure, where F[p] = KL(p||q)

Background

Sparse Distribution: A k-sparse distribution is a distribution where any sample drawn has the same ksparse support, where the k-sparse support is arbitrary.

Formally, denote the set of distributions on an ndimensional domain \mathcal{X} as:

$$\mathcal{P} = \left\{ p(\cdot) : \mathcal{X} \to \mathbb{R}_+ | \sum_{\boldsymbol{x} \in \mathcal{X}} p(\boldsymbol{x}) = 1 \right\}$$

The set of domain restricted densities, denoted by is the set of probability density functions with support $\mathcal{S} \subset [n]$, i.e.,

$$\mathcal{P}_{\mathcal{S}} = \{q(\cdot) \in \mathcal{P} \mid orall \mathrm{supp}(oldsymbol{x})
ot \subseteq \mathcal{S} : q(oldsymbol{x}) =$$

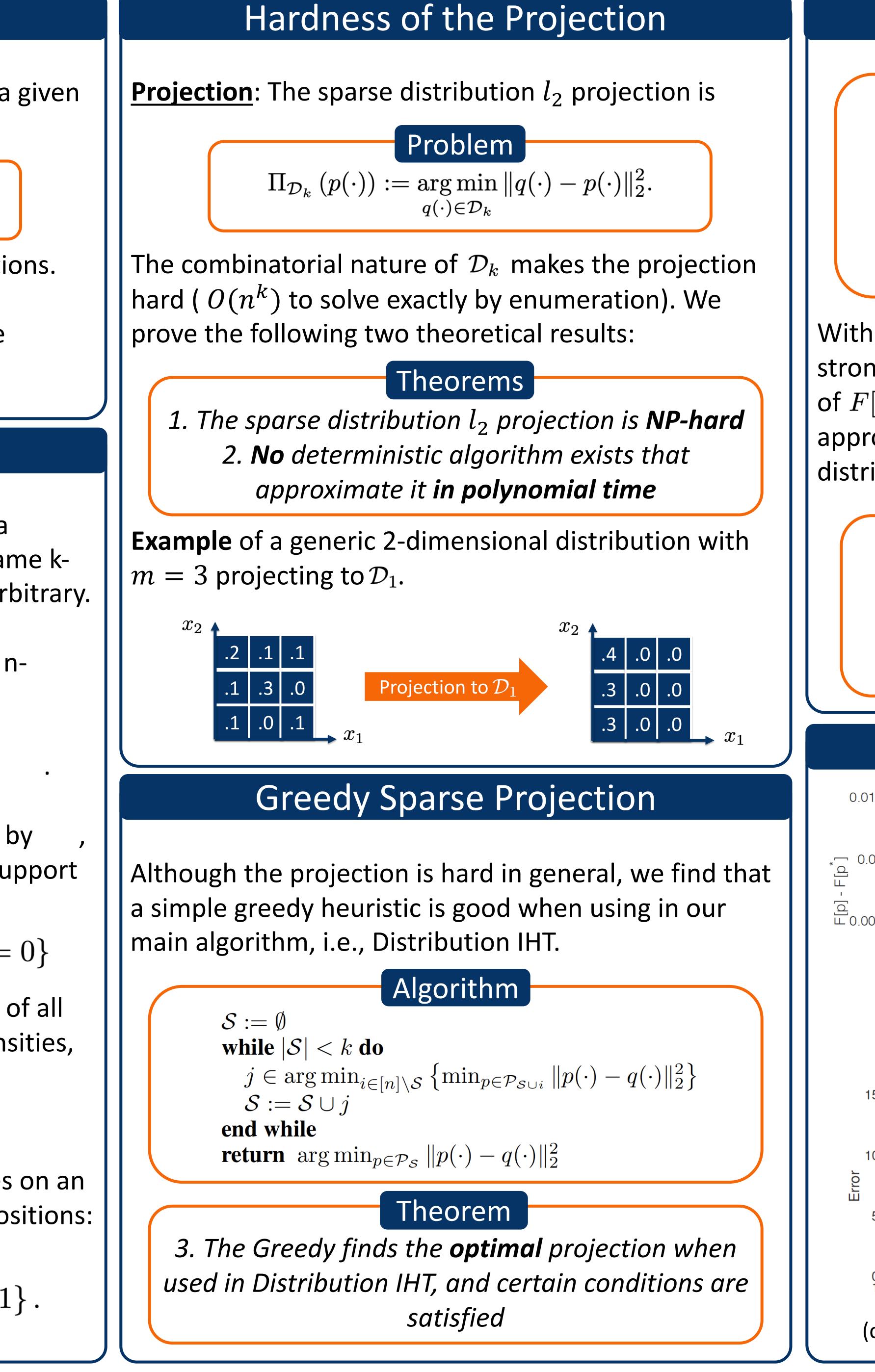
The distribution sparsity is defined as the union of all possible k-sparse support domain restricted densities, thus a **non-convex** function space:

$$\mathcal{D}_k = \cup_{|\mathcal{S}| \leq k} \mathcal{P}_{\mathcal{S}}.$$

Problem Setting: We consider discrete densities on an n-dimensional integer lattice, with totally m^n positions:

 $\mathcal{X} = \{ \boldsymbol{x} \in \mathbb{Z}^n \mid \forall i \in [n], 0 \leq x_i \leq m - 1 \}.$

Anastasios Kyrillidis³ Oluwasanmi Koyejo¹ ²University of California at Berkeley ³Rice University



Distribution IHT

Algorithm

 $t \leftarrow 0$ while t < T do $q_{t+1}(\cdot) = p_t(\cdot) - \mu \frac{\delta F}{\delta p_t}(\cdot)$ $p_{t+1}(\cdot) = \Pi_{\mathcal{D}_k} \left(q_{t+1} \right)$ end while return $p_T(\cdot)$

With some regular assumptions: strong convexity/smoothness and Lipschitz continuity of $F[\cdot]$, and the greedy procedure solves the projection approximately, we can prove the convergence of distribution IHT.

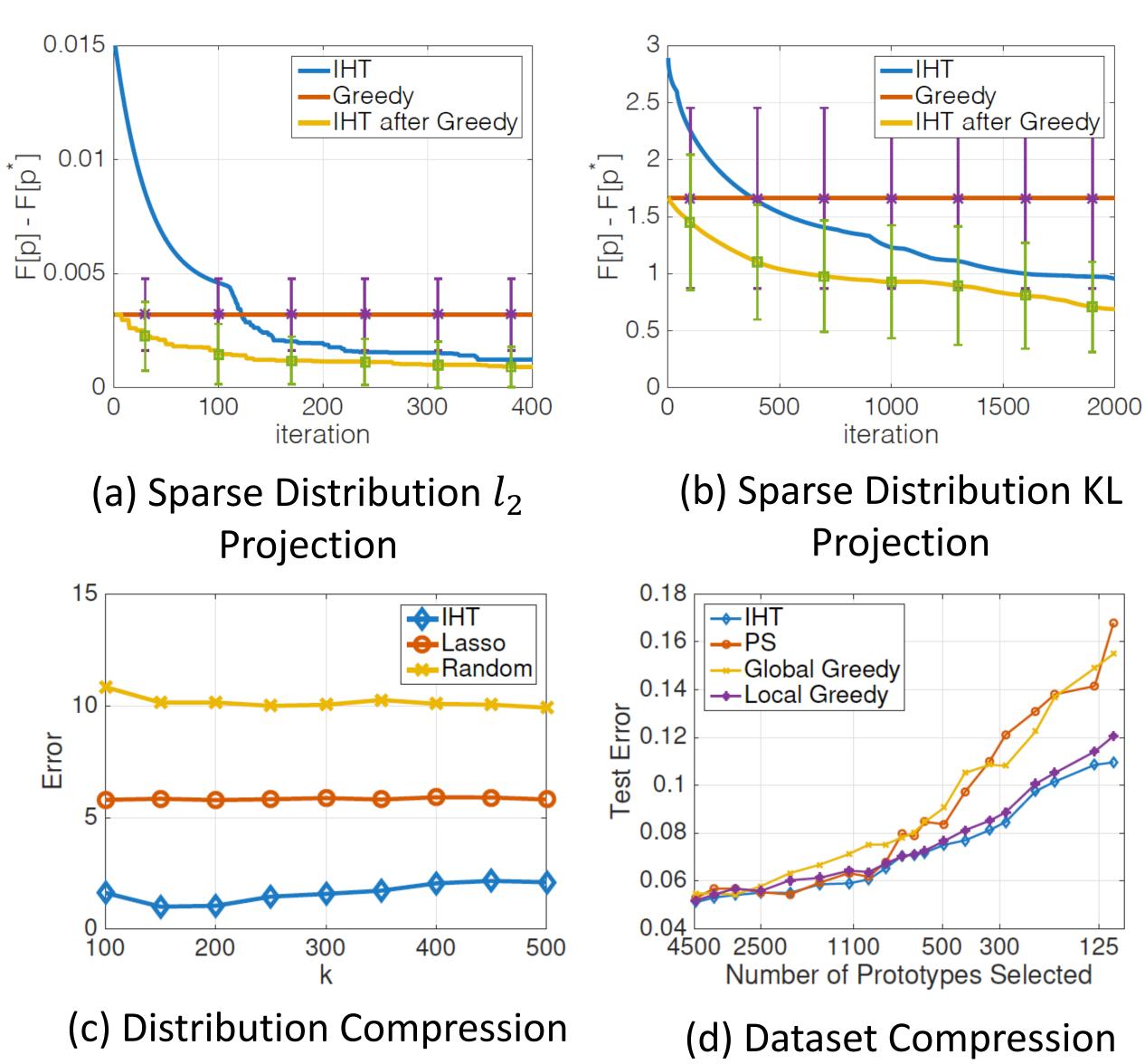
Theorem

4. If the conditions are satisfied, we have

 $F[p_T(\cdot)] \le OPT + c + \epsilon$

after iterations $T \ge O(\log \frac{1}{\epsilon})$.

Experiments



Scan Me for Full Paper

