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Problem: Bayesian inference on large datasets can be 
impractical. 

Illustration:

num. of data = 13                                   num. of data = 5

Motivation

Can we quickly find a small coreset (weighted 
subset) to summarize the whole dataset, 

improving scalability for Bayesian inference?

Question

Settings:
• Given i.i.d. data samples 𝑋 = 𝑥! !"#$ , and a 

probability model parametrized by 𝜃 ∈ ℝ%. 
• The posterior distribution is 

𝑝 𝜃 𝑋 = &((|*)&(*)
& (

.

Notations: 
• 𝑤:= 𝑤#, … , 𝑤$ , ∈ ℝ-$ is a non-negative vector.
• 𝑤 ∈ 𝐶.: = {𝑤: ||𝑤||/ ≤ 𝑘} is a 𝑘-sparse vector
• 𝑤 ∈ 𝐶. ∩ ℝ-$ defines a coreset of size 𝑘.

To find a Bayesian coreset of size 𝑘 (𝑘 < 𝑛):
• The coreset needs to approximate the likelihood.
• The full-dataset log-likelihood ℒ 𝜃 := log 𝑝(𝑋|𝜃)

ℒ 𝜃 = ∑!"#$ log 𝑝(𝑥!|𝜃) = ∑!"#$ ℒ!(𝜃)
• The coreset log-likelihood

ℒ0 𝜃 := ∑!"#$ 𝑤!ℒ!(𝜃),
• To	minimize	the	distance	between	ℒ and	ℒ0:

• 𝜋 can	be	a	cheap	approximation	of	the	posterior.

To Construct Bayesian Coresets

Goal: to solve the nonconvex optimization problem (1) 
for Bayesian coreset construction.

Core Idea: Iterative Hard Thresholding (IHT). 
• Hard threshold operator Π1!∩ℝ"#(𝑤): choose the 𝑘

largest elements of 𝑤, and set the rest to be 0.
• Illustration of IHT with step size 𝜇. Iteratively do:

Proposed Algorithms: Automated Accelerated IHT (A-
IHT and A-IHT II). Key components are described below.

The Proposed Method
Task: Bayesian Logistic Regression
Baselines: Random, GIGA [1], and SparseVI [2].
Datasets:
• The reduced phishing dataset (Include SparseVI): 

dataset size 𝑛 = 500; parameter dimension 𝐷 = 10. 
• The original phishing dataset (No SparseVI): dataset 

size 𝑛 = 11055; parameter dimension 𝐷 = 68. 
Evaluation: KL divergence between true posterior and 
coreset posterior. 

Experiments

Time Complexity: w.r.t. dataset size 𝑛, coreset size 𝑘.
• A-IHT and A-IHT II are 𝑂(𝑛 log 𝑘).
• Recent work GIGA [1] and SparseVI [2] are 𝑂(𝑛 𝑘).

Convergence Analysis:
• Standard assumption: Restricted Isometry Property 

(RIP), i.e., loosely speaking convexity + smoothness.

Theoretical Analysis

With the RIP assumption, A-IHT converges to the 
optimal solution linearly under certain condition. 

Convergence Theorem
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(1)

𝑤ℝ$ 𝑤 − 𝜇∇𝑓(𝑤)

Π%!∩ℝ"#(𝑤 − 𝜇∇𝑓(𝑤))
𝐶( ∩ ℝ)$

IHT + step size selection + active subspace 
exploration + momentum 

A-IHT

IHT + step size selection + active subspace 
exploration + momentum + debias step 

A-IHT II

A-IHT & A-IHT II find
better coresets

Results with the reduced phishing dataset

SparseVI costs
×10! more time

A-IHT & A-IHT II find
better coresets

Results with the original phishing dataset

GIGA starts to cost more 
time at coreset size 𝑘
≈ 2% of the dataset.


