

Motivation & Introduction

Compound AI systems consist of <u>multiple interacting AI</u> components.

Examples: LLM + image generator; multi-agent systems.

• The example below shows GPT-4's inconsistent collaboration with DALL-E. User prompt: "Generate three separate images of a cat being progressively angrier."

(a) Calm Cat

⁽d) Slightly Annoyed Cat

(b) Slightly Irritated Cat

(c) Very Angry Cat

(e) Angry Cat

(f) Furious Cat

- **Open problems**: aligning compound AI systems, due to **1. Non-differentiability:** prevents end-to-end gradient optimization such as vanilla DPO and RLHF.
- **2. Credit assignment**: the system's preference not easily decompose into individual component's preference.
- **3. Datasets**: alignment datasets may exist for the system's overall task, but not for the sub-tasks of components.

Question

How to align compound AI systems in a principled way?

Contributions

- Define the problem of alignment of compound AI system; propose the SysDPO Framework for solving it;
- Apply SysDPO to align a system of an LLM agent and a text-to-image diffusion model;
- Demonstrate that aligning compound AI systems
- increases the performance complex tasks.

Our work represents an initial step in forming a foundation for aligning compound AI systems as cohesive entities.

Aligning Compound Al Systems via System-level DPO

Xiangwen Wang^{1,2*} Yibo Jacky Zhang^{1*} Zhoujie Ding¹ Katherine Tsai¹ Sanmi Koyejo¹ ²University of Science and Technology of China ¹Stanford University

The SysDPO Framework

System Representation. We represent the compound system as a <u>Directed Acyclic Graph (DAG)</u>. Node x is tl input; y_i are intermediate outputs; z_i are final output

(a) LLM + Diffusion Models (b) Mixture-of-agents³ **Probability Factorization.** The DAG structure encodes the conditional independence of the generated data.

Denote $s = \{y_i, z_j\}_{i \in I, j \in J}$ as the set of all generated output $p_{\theta}(s|x) = \prod_{i,j} p_{\theta_i}(y_i|parent(y_i)) \cdot p_{\theta_j}(z_j|parent(z_j))$

- 3. Preference Dataset Construction. Given a query x, th system generates two versions of the responses: s^w ,
- **4.** Loss Function Design. Given a dataset of (x, s^w, s^l) , Al system formulated as a DAG, we can apply DPO:

$$L(\theta) = -\mathbb{E}\left[\log\sigma\left(\beta\log\frac{p_{\theta}(s^{w}|x)}{p_{\overline{\theta}}(s^{w}|x)} - \beta\log\frac{p_{\theta}(s^{l}|x)}{p_{\overline{\theta}}(s^{l}|x)}\right] \\ \text{where } \overline{\theta} \text{ is the reference model.}$$

Application: LLM + Diffusion Model

Goal: apply SysDPO to a group-image-generation application (Figure (a)): an LLM ψ and a Diffusion Model ϕ . **Issue**: the diffusion model does not directly provide the likelihood p_{ϕ} .

Method: to obtain a tractable loss function in this application, we prove the following theorem.

Theorem (Sketched)

 $L(\psi, \phi) \leq -\mathbb{E}\left[\log \sigma\left(\beta\left(A^{w} - A^{l}\right)\right)\right]$, where $A^{w} = \log \frac{p_{\psi}(y^{w}|x)}{p_{\overline{\psi}}(y^{w}|x)} + T \sum_{i} (-\ell_{\epsilon}(\phi; z_{i}^{w}, y_{i}^{w}) + \ell_{\epsilon}(\overline{\phi}; z_{i}^{w}, y_{i}^{w}))$ similarly for A^l ; T is the num. of steps of the diffusion.

In the above, $\ell_{\epsilon}(\overline{\phi}; z_i^w, y_i^w)$) is the denoising loss function of the diffusion model.

³Mixture-of-Agents Enhances Large Language Model Capabilities. Wang et al.

	Experiments			
d Al che ts.	Task: multi-modal progression, where the system gene image sequences with a progressively changing attribu Dataset Construction: 1. 40 scene-related attributes (e.g., brightness, fog den			
θ_1	 2. GPT-4 generates 250 prompts for each attribute. 3. 6000 comparison pairs created by ranking generated sequences with the Preference Score (q). Evaluation Metrics: Preference Score (q): Measures ordering consistency evenness of generated sequences. 			
S	Order Consistency Ratio: Evaluates how often seque maintain the correct order.			
outs.	Results:			
_j))	Method	Preference Score	Order Consis Ratio	
ne	SysDPO (Proposed)	0.25	70%	
S^{ι} .	System Before Alignment	-0.20	32%	
an	Best-of-4 Sampling	0.16	67%	
1	Only Train Language Model	0.23	65%	
,	Only Train Diffusion Model	-0.03	35%	
	Visual examples: Prompt images of a lake as the ice Before training:	ual examples: Prompt — "I want to see a series of ages of a lake as the ice increases." fore training:		

After training:

